Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Environ Monit Assess ; 195(6): 789, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20242704

ABSTRACT

Environmental Management Systems (EMS) are currently the cornerstone of achieving sustainability globally. Nevertheless, the question is applicability of EMS in the medical sector. Hence, the review focused on applicability of EMS in medical waste management Zimbabwe. EMS involves overall processes that facilitate reduction of dire impacts of company's activities while increasing performance. EMS framework consists of environmental policy, planning, implementation, checking, review and improvement stages. To examine applicability of EMS in management of medical sector waste, published secondary sources with information related to the topic were utilised. Analysis of strengths and opportunities of EMS was used as a base to examine its applicability in medical waste management. Zimbabwean medical sector consist of hospitals and primary healthcare facilities. Medical waste includes pathological, pharmaceutical, cytotoxic, radioactive, chemical, sharp, infectious and general waste. However, twenty-first century witnessed expansion of medical institutions to accommodate COVID-19 patients, resulting in generation of construction and demotion waste. Medical institutions in Zimbabwe are accountable for solid waste management at generation source although municipalities are responsible for conveying solid waste to landfills. Solid waste from medical sector is disposed through traditional strategies namely landfilling, incineration, open pits and open burning, resulting in water, air, and soil contamination. However, EMS can reduce quantity of solid waste disposed through waste reuse, recycle and recovery. Moreover, achievement of integrated approach, effective legislation, policies and inclusive participation in medical waste management is adopted through use of EMS. Therefore, EMS were utilised to develop an integrated sustainable medical waste management model to achieve sustainability.


Subject(s)
COVID-19 , Medical Waste , Refuse Disposal , Waste Management , Humans , Solid Waste/analysis , Zimbabwe , Conservation of Natural Resources , Environmental Monitoring , Waste Management/methods , Waste Disposal Facilities , Medical Waste/analysis , Refuse Disposal/methods
2.
Environ Sci Pollut Res Int ; 29(33): 50780-50789, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1930513

ABSTRACT

In this study, the hospital waste generation rates and compositions in Delhi were examined temporally and spatially during the first COVID-19 wave of April 2020. A total of 11 representative hospitals located in five districts were considered. The pre-COVID hospital waste generation rates were relatively consistent among the districts, ranging from 15 to 23 tonne/month. It is found that the number of hospital beds per capita may not be a significant factor in the hospital waste quantity. Strong seasonal variations were not observed. All districts experienced a drastic decrease in generation rates during the 1-month lockdown. The average rates during the COVID period ranged from 12 to 24 tonne/month. Bio-contaminated and disposable medical product wastes were the most common waste in Delhi's hospitals, representing 70-80% by weight. The changes in waste composition were however not spatially consistent. The lockdown appeared to have had a higher impact on hospital waste generation rate than on waste composition. The findings are important as the design and operation of a waste management system are sensitive to both waste quantity and quality. Waste records at source helped to minimize waste data uncertainties and allowed a closer examination of generation trends.


Subject(s)
COVID-19 , Medical Waste Disposal , Medical Waste , COVID-19/epidemiology , Communicable Disease Control , Hospitals , Humans , India/epidemiology , Medical Waste/analysis , Pandemics
3.
PLoS One ; 17(1): e0259207, 2022.
Article in English | MEDLINE | ID: covidwho-1648363

ABSTRACT

COVID-19 greatly challenges the human health sector, and has resulted in a large amount of medical waste that poses various potential threats to the environment. In this study, we compiled relevant data released by official agencies and the media, and conducted data supplementation based on earlier studies to calculate the net value of medical waste produced in the Hubei Province due to COVID-19 with the help of a neural network model. Next, we reviewed the data related to the environmental impact of medical waste per unit and designed four scenarios to estimate the environmental impact of new medical waste generated during the pandemic. The results showed that a medical waste generation rate of 0.5 kg/bed/day due to COVID-19 resulted in a net increase of medical waste volume by about 3366.99 tons in the Hubei Province. In the four scenario assumptions, i.e., if the medical waste resulting from COVID-19 is completely incinerated, it will have a large impact on the air quality. If it is disposed by distillation sterilization, it will produce a large amount of wastewater and waste residue. Based on the results of the study, we propose three policy recommendations: strict control of medical wastewater discharge, reduction and transformation of the emitted acidic gases, and attention to the emission of metallic nickel in exhaust gas and chloride in soil. These policy recommendations provide a scientific basis for controlling medical waste pollution.


Subject(s)
Air Pollution/prevention & control , COVID-19/epidemiology , Environmental Pollution/prevention & control , Medical Waste/analysis , Neural Networks, Computer , Waste Management/methods , Wastewater/analysis , Air Pollution/analysis , COVID-19/economics , China/epidemiology , Chlorides/analysis , Environment , Environmental Pollution/analysis , Gases/analysis , Humans , Incineration/methods , SARS-CoV-2/pathogenicity , Waste Management/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL